
8 set 1, 2016

Planning and implementing
coding in the junior classroom for
competency and thinking-skill development

GARRY FALLOON, PAULA HALE, AND TONIA FENEMOR

T E A C H I N G A N D L E A R N I N G

KEY POINTS
•	 Computational tasks such as coding can provide teachers with an

effective means of building a range of general and higher order thinking
skills in their students.

•	 Computational tasks can be used to complement the teaching of basic
mathematics concepts such as angles, distance, and direction, and to
support the development of positional language in young children.

•	 Using physical movement, instruction-based activities are effective for
introducing young children to computational concepts and procedure
building.

•	 Working collaboratively on problem-based computational challenges can
support the development of a range of key competencies.

http://dx.doi.org/10.18296/set.0031

http://dx.doi.org/10.18296/set.0031

9set 1, 2016

Introduction
Recent changes in many countries have seen the
learning of basic coding included as part of core
curricula, or encouraged by governments and their
education ministries to be included as components
of other curricula, such as mathematics, science, or
technology (eg., Australian Curriculum Assessment &
Reporting Authority, 2014; Department for Education,
2013; Education Scotland, 2015). Much of the thinking
behind these moves relates to promoting interest in
technology careers, responding to the well-documented
shortage of skilled professionals engaging in high-tech
and supposedly high economic value work (Careers
NZ, 2015; Doesburg, 2013; Rosenbaum, 2015).

Coding falls under the broad umbrella of activities
commonly known as computational thinking, which
Jeanette Wing (2010) defines as “thought processes
involved in formulating problems and their solutions
so that the solutions are represented in a form that can
be effectively carried out by an information-processing
agent” (p. 1). At its most basic, this may involve
students generating simple code to program sprites
(a two-dimensional image or animation) to perform
certain movements or actions, often in response to
“challenges” or problems posed by teachers. Indeed,
many object-oriented apps and programs have been
developed to help teachers introduce computational
concepts to their students (CSTA, 2011). These simple,
graphically-driven “drag and drop” applications
include Scratch and its junior school equivalent,
Scratch Jnr; Pyonkee (a Scratch “clone” for iPads),
Tickle (for use with physical devices such as Spheros

and Ollies), and CargoBot, Lightbot and Daisy
the Dinosaur (“challenge-based” apps suitable for
introducing basic coding concepts). The advent of
these cheap apps, and moves towards bring your own
device (BYOD) learning environments, means that
engaging in computational learning through coding
activities is now a viable option for many teachers
and their students. However, teachers, already
burdened by heavy workloads and an overcrowded
curriculum, could be excused for questioning the
merits of adding coding to their students’ learning
programmes. Implications from such a move are
considerable, including the need for professional
development and curriculum support to enable them
to successfully integrate the new area of learning into
their programmes.

While early work by by Pea (1983), Pea and
Kurland (1984a, 1984b) and Mayer, Dyck and Vilberg
(1986) explored possible links between computational
activities and general thinking-skill development,
little appears to have been done since investigating
this relationship. Most recent research has focused on
the development of computational thinking itself—
and the practical skills involved in developing code,
and how these can best be developed in students.
However, the early work of Pea and his colleagues
provided useful direction for this study, as it alluded
to the potential of computational work for building
useful general thinking capability. As Mayer et al.
(1986) succinctly put it, “the most fruitful way to
search for a relationship between thinking skills and
programming is to focus on thinking skills that are

Recent moves within New Zealand and internationally have called for the
inclusion of computational learning through activities such as coding, in school
curricula. However, including activities such as coding in school curricula is a
bold move, and one that will require significant support if it is to successfully
achieve its goals. This article reports on outcomes from the first year of a TLRI-
supported study exploring how teachers planned and integrated coding into
their numeracy programme, and the types of thinking students employed
when completing coding tasks. Findings suggest that coding can provide
teachers with an effective means of exercising an array of general and higher
order thinking skills and learning competencies with their students, but careful
attention needs to be given to the planning and systematic implementation
of these activities. The article concludes with a series of recommendations for
teachers considering exploring coding in the classroom.

T E A C H I N G A N D L E A R N I N G

10 set 1, 2016

cognitive components of programming” (p. 610).
Two case studies were completed investigating coding

in the primary school as part of an ongoing Teaching
and Learning Research Initiative (TLRI) project, entitled
Exploring Student Thinking in iPad-Supported Learning
Environments. One study is detailed in this article. It
reports key stages in the planning and integration of
coding tasks within the geometry topic, and analyses data
gathered relating to the thinking types employed by the
students, as they solved the computational challenges set
by their teachers.

The elements of computational
thinking
In 2012 Brennan and Resnick presented a framework
identifying what they saw as the main elements of
computational thinking built through coding. They
developed this from an analysis of 7–14 year old students’
use of Scratch, a graphical coding application designed
for schools and developed at Massachusetts Institute
of Technology. They identified three main elements:
computational thinking concepts, computational
thinking practices, and computational thinking
perspectives (Table 1).

Brennan and Resnick’s framework provided useful
direction informing data collection for the second
research question in this study, by pointing to the types
of activities within the students’ coding work where the
exercise of different thinking types might be apparent.
Classification of thinking types within these was made
using Krathwohl’s (2002) revision of Bloom’s taxonomy
(cognitive domain).

Research questions
Data were gathered responding to these research questions:
1. 	 What strategies did these primary teachers use to plan for

and integrate coding into their numeracy programme?
2. 	What thinking types did these young students use while

completing their coding tasks?

The school and classroom context

Data were gathered in a junior primary (Year 1 and 2)
innovative learning environment (ILE) from February to
September 2015. The school was a decile 7 contributing
primary located south-east of Hamilton, with a roll of
nearly 500. Two teachers worked collaboratively in the ILE
and were experienced practitioners, averaging 22 years’
teaching experience. Their 36 students had permanent
access to around 20 iPads supplied by the university.

The coding apps and curriculum links

A combination of the apps Daisy the Dinosaur (Daisy) and
Scratch Jnr was used during the study. These apps were
chosen as they were free, easy to use, and graphically based,
removing the need for students to wrestle with complicated
interfaces or technically complex programming languages.
These two were selected as they were similarly designed in
the way code was built (i.e., graphically-oriented, “drag and
drop”). It was anticipated this would mean less relearning
for students, as they transitioned between the structured
“code-teaching” environment of Daisy, and the more open,
creative environment of Scratch Jnr.

The apps were used in a geometry unit taught to help
students learn basic shapes, master positional language,
and give and respond to instructions.

T E A C H I N G A N D L E A R N I N G

TABLE 1. SUMMARY OF THE MAIN ELEMENTS OF BRENNAN & RESNICK’S (2012)
COMPUTATIONAL THINKING EVALUATION FRAMEWORK

Element Description Coding application examples

Technical and conceptual
knowledge

Technical and conceptual
understanding of the basic “building
blocks” of code, what they do, and
how they can be used.

Sequencing

Events and triggers

Parallelism (running processes in parallel)

Using conditionals, operators and variables

Practices The techniques and strategies used
when building code.

Incremental and iterative (‘step-by-step” code
building, testing, modifying)

Debugging code

Remixing or reusing code (own or others)

Modularisation (assembling code into modular
“blocks’, each contributing to a larger procedure)

Perspectives Dispositions and attitudes displayed
while building code

Sharing code with others

Collaborating to solve problems

Coding as a personal creative outlet

Understanding of technology as a problem solving tool

11set 1, 2016

Basic computational knowledge such as code
sequencing, learning about step size and distance
(calibrating), and triggering procedures was developing
using Daisy, through a series of “sandpit-like” exploratory
activities and challenges. These were followed by more
formal learning activities linked to Level 1 mathematics
objectives from the Geometry and Measurement strand
of The New Zealand Curriculum (Ministry of Education,
2007) (NZC).

The learning goals were:
•	 Position and Orientation

–	 Give and follow instructions for movement that
involves distances, directions, and half or quarter turn;

–	 Describe their position relative to a person or object.
•	 Shape

–	 Sort objects by their appearance.

The geometry coding challenges

Using Scratch Jnr., students were challenged to develop
code to make their sprite (a cat) draw a range of basic
geometric and letter shapes. These were:
•	 two squares of different dimensions;
•	 two rectangles of different dimensions;
•	 a range of upper and lower case letters (eg., T, L, U)
•	 a triangle (extra for experts).

Students could choose the order they completed the
challenges—although most elected to follow the order
recorded by the teachers on the whiteboard. As they
successfully completed each challenge and had it verified
by a teacher, they logged their results on the whiteboard by
placing their initials beside the appropriate shape (Figure 1).

Data collection and analysis
Data relating to question 1 (planning and integration) were
collected via interview, document analysis, and iPad display
and audio capture. Interview questions probed teachers’

organisation and planning strategies, how they viewed the
activity as contributing to wider school competency-based
objectives, and the specific geometry learning outcomes
they were expecting the children to master. This was
supported by document analysis (teacher planning, group
organisation notes, information on the school’s learner
virtues framework) and data from the iPad display capture
app. These data were inductively coded into themes that
have been used to structure the findings.

Data for question 2 (thinking types) were collected
using a specially-developed app installed on 20 university-
supplied iPads.1 The app recorded each device’s display and
student discussion and interaction while they worked on
their coding challenges. These recordings were downloaded
onto a laptop for later analysis, and selected samples were
double-blind coded against a “thinking types” framework
developed from Krathwohl’s (2002) revision of Bloom’s
Taxonomy (Table 2), using Studiocode video data analysis
software. The thinking type is listed in the left column,
and descriptions of how each thinking type was interpreted
in the context of the students’ coding work is provided in
the right column. Quantitative information relating to
each of these thinking types was exported from Studiocode

T E A C H I N G A N D L E A R N I N G

FIGURE 1. STUDENTS INITIALLED SUCCESSFUL
OUTCOMES AFTER TEACHER VERIFICATION

TABLE 2. A SUMMARY OF THE “THINKING TYPES”

FRAMEWORK USED TO CODE DISPLAY DATA

Thinking type Description of activity within coding work

Remembering Retrieving information relating to what
needed to be done and/or outcome
attributes;

Retrieving information related to the
features, tools or operation of the app.

Understanding Deconstructing task or problem into stages
or activities to aid understanding of how to
solve it;

Interpret attributes of successful outcomes
and how these will be evaluated.

Applying & Creating Using computational knowledge to create
and test code using “build and test”
strategy;

Using computational knowledge to create
and test code using incremental strategy.

Analysing Using general thinking & computational
knowledge to understand challenges, &
predictive thinking to identify and rectify
possible errors, prior to creating & testing
code;

Using general thinking & computational
knowledge to analyse and rectify errors after
testing code.

Evaluating Analysing how well the outcome meets
success criteria;

Analysing how well the outcome meets
success criteria, and modifying code if
needed.

Note: Applying and creating are combined, as applying computational
knowledge generally resulted in the creation of code.

12 set 1, 2016

collaborative skills and encouraging acceptance of others’
views. Mixing abilities also avoided the assumption
that because a child may have been of lower ability for
number and literacy, that they did not have something
of value to add when working alongside a child of higher
ability in this type of task. As initial trials progressed,
pairings changed to ensure particular individuals did not
dominate. It was important to build combinations based
on trusting relationships, where each group member
respected and valued the input of others.

Analysis of display data revealed the effect of grouping
decisions on the children’s work performance, and the
value of close teacher observation and a willingness to
change groupings, should issues become apparent. While
pairs of mixed ability were initially selected, early analysis
of display audio data revealed limitations to this in cases
where personalities conflicted, or where one student
dominated and the other became little more than a passive
observer. Frequently, outputs from these pairs reflected
the work of the dominant individual, or at best, was the
result of separate interactions with the device on a more
or less equal “time share” arrangement. The display data
were valuable for revealing these issues—despite teachers’
best efforts, they were unable to monitor all students all the
time. The display data helped teachers learn more about
their students’ independent work characteristics and habits,
and provided them with useful information for regrouping
decisions that in the end reflected a balance between ability
and social considerations.

The importance of preparatory activities

Recognising the abstract nature of coding and the
conceptual challenge this may present to very young
children working in a 2-dimensional, screen-based
environment, the teachers decided to complete an array
of practical introductory tasks. These were designed
to introduce “coding essentials” such as sequencing
instructions, calibration (distance per unit or step),
directions (left, right, forwards, backwards) and angles;
and build understanding of the attributes of the shapes
students were going to create (number and length of sides,
angles, corners and the like). The activities comprised
students moving in different directions responding to
instructions given by one another and their teachers,
creating patterns of objects by following instructions and
using positional language, and producing the required
shapes from pieces of paper. The shapes were also used
later on as models by some students during their coding,
with many physically comparing them to the shapes
drawn by their sprite.

Again, the value of completing these activities was
apparent when screen-capture data were analysed. Clear
evidence was found of students referencing the practical

T E A C H I N G A N D L E A R N I N G

and analysed in Microsoft Excel, to determine the average
total times pairs spent applying each of the thinking types
during their coding work.

Discussion of findings
Findings and related discussion are presented below,
aligned with each of the research questions. For
question 1, three themes emerged from data. These were:
student organisation and developing learner virtues; the
importance of preparatory activities; and the roles of the
teachers and students.

Student organisation and developing
learner virtues

An important outcome from this exercise was to further
the teachers’ efforts to develop dispositional, social, and
collaborative competencies in these young students,
aligned with the school’s learner virtues framework
(Figure 2). These virtues aim to develop students who are
active learners, technologically capable learners, effective
thinkers, and effective communicators, who are able to
make a difference. The virtues were developed from NZC
key competencies, and permeate activities across all levels
of the school. Given the brief time most of these children
had been at school, the teachers were keen to use this
opportunity to build knowledge of these virtues, and how
students can put them into practice.

To facilitate this, students were organised into
teacher-selected pairs of mixed ability and year levels.
These pairings allowed students to work together to solve
problems by sharing their understanding and knowledge,
and supported broader competencies such as building

FIGURE 2. THE SCHOOL’S LEARNING VIRTUES
FRAMEWORK

13set 1, 2016

activities by transferring understandings developed from
them to their on-screen coding work.

An example of this was students C & M, who applied
an incremental strategy to coding their square which they
had practised in the playground activities:

…we need to make all the sides the same… they need to be
the same size… they need to be 7… remember… when we
were outside we tested it bit by bit to see if we got it right
… we’ve got to do the same here… (C & M, display capture
23.15–24)

In another example, students F & A were coding for an
upper case “T” (Figure 3). They had correctly coded the
up stroke and the left cross bar, but had become stuck at
creating the right cross bar.

…it’s only gone back to the middle, A… it hasn’t gone
across enough! (F) Ummm… (pause)… but when we did
it outside we got it! (A)… Yeah…what did we do again?
(F) (pause). It has to keep going… we’ve got to make it go
another 5… remember… you needed to keep going and
not stop in the middle, when we did it the other day (in the
playground) (A) (F & A, display capture, 17.37–50)

There was also considerable display capture evidence
suggesting using Daisy for learning the “mechanics” of
building code, was worthwhile. All students seamlessly
applied the techniques learnt using Daisy to their work
in Scratch Jnr. These included building and editing
sequences, triggering events, selecting appropriate turning
and movement-direction blocks, and so on. Furthermore,
the more structured and “less-optioned” environment
of Daisy provided fewer potential distractions, as the
students mastered the basic concepts they needed.

The roles of the teachers and students

As could be expected, very active teacher engagement
was required during these activities. However, given the
task’s dual purposes of geometry concept development

T E A C H I N G A N D L E A R N I N G

FIGURE 4. PEER FEEDBACK ON CODE EFFORTS WAS
TRIALLED FOR THE FIRST TIME

and building collaborative work practices, elements of
peer feedback were also incorporated at various points.
During these occasions students met with other pairs
and provided feedback on progress, a few pairs assisting
by advising on code improvements or helping with
debugging (Figure 4). On one occasion, a pair of students
were recorded directly sharing their code with another
pair who were having trouble coding their upper case
“Z” (R & T and S & L, display capture, 46.25–47.09).
However, display data revealed much of the feedback was
not of a highly formative nature—providing affective
rather than task attribute-related support. Despite
this, data indicated the students took this process very
seriously, and given it was the first time it had been
attempted, the teachers were pleased with the outcome,
commenting that “it (coding) was an ideal activity
to build these sort of skills, because it’s about solving
problems together” (Teacher A, interview, July 2015).

Teacher explanation and modelling were critical for
demonstrating to the students the skills and behaviours
needed to work collaboratively, and to respect and value
the contributions of others. This involved clearly setting
expectations by continually referencing the learner virtues
framework, diligently checking on students’ progress and
work habits, and modelling practical strategies they could
use to help them work together, such as sitting beside
rather than opposite each other while they worked with
the iPads. It was important that if groupings were changed
that students were made aware of why they were changed,
and what they needed to do to improve their performance.
Task success criteria were collaboratively developed with
the students beforehand, and these were continually
referenced as “aim points” to work towards, while students
worked. A number of students were recorded comparing
their emerging outcomes with the shape attributes drawn
and recorded on the whiteboards, indicating the value

FIGURE 3. STUDENTS F & A TRANSFERRED
KNOWLEDGE FROM THE PRACTICAL TASKS TO DEBUG

THEIR UPPER CASE “T” CODE

14 set 1, 2016

of this strategy. Modelling extended to helping students
understand ways of working, and the sort of strategies
and behaviours they should be using to enable them to
successfully complete the tasks together. This was achieved
via direct intervention while students were working, often
to model the sort of attitude, language, or questioning
students should use when collaboration is a goal. Doing
this was essential to fulfil the teachers’ key competency
objectives, and required careful and continuous monitoring
of the class, which at times, was challenging.

Computational activity and the exercise of
thinking skills

To answer the second question, display data were
analysed using Studiocode video analysis software.
Due to the time-consuming nature of coding video
and the large volume of data produced, data from nine
purposively selected pairs were analysed. These pairs
were chosen following an initial review of all data, to
ensure that students with a range of work strategies and
capabilities were included. Data from 6 boy/girl, 2 girl/
girl, and 1 boy/boy combination were analysed.

Figure 5 provides the average total times for these
pairs, coded against each of the thinking type categories
summarised in Table 2. During coding, note was also
taken of the computational element aligned with Brennan
and Resnick’s framework that each pair was engaged
in at the time. An additional category labelled teacher
interaction has been added. This was decided upon
following the initial review of display data, that revealed
the exceptionally high levels of teacher engagement
needed to support these young students while they
were completing their work. Details of the nature of
this engagement, and why it was needed, have been
summarised earlier.

Table 3 below maps Brennan and Resnick’s (2012)
computational elements to the thinking types the pairs
were exercising at the time coding decisions were made.
Of note is the inclusion of conceptualising and planning
and analysing (predicting) that were not included in
the original framework. The former refers to thinking
that focused on building conceptual understanding of
what the challenge required, and on strategising how it
might be solved. Of the 18 percent of total time coded as
remembering and understanding, nearly two thirds of this
was spent on conceptualising and planning. On average,
these students spent over twice as long discussing and
planning what they had to do (and how they might do
it), than they did actually doing it (i.e., applying and
creating). While conceptualising and planning appeared
very important elements in these students’ computational
work, they were very time-consuming. Teachers should
be aware of balancing these elements with encouraging
students to test and then evaluate and modify code,
according to outcomes. Both of these thinking types are
important in computational work.

Predictive thinking (predicting) was often linked with
analysing, and it describes a type of analysis where students
predicted a likely outcome from running their code, before
they ran it. Of the 10 percent average total time coded as
analysing, over half of that was spent predicting. While
predicting represented quite sophisticated thinking for
such young students, like conceptualising, doing this was
something of a “double-edged sword” as it consumed
significant time, often limiting opportunities to test and
evaluate ideas through actions. As above, it is important
teachers encourage students to “give it a go” and evaluate
the outcome, rather than spend lengthy periods trying to
write perfect code from the outset.

Clear evidence of a full array of thinking types being
exercised during this work, was present in the display data
from these students. While there is insufficient space here to
provide “code by code” examples of this, they can be found
in other publications (Falloon, in review). Suffice to say, data
indicates carefully designed, systematically implemented,
and actively scaffolded computational activities like coding,
can provide teachers with an ideal platform to support the
exercise of different thinking types and a range of general
learning competencies in their students.

Summary and conclusion
Acknowledging the limitations of this study in terms of
its scope and duration, the quality and volume of data
generated by the display capture tool and other methods
provided unique insights into the thinking types students
used in their coding tasks, providing useful information
for teachers considering such activities. While results

T E A C H I N G A N D L E A R N I N G

FIGURE 5. AVERAGE TOTAL TIMES FOR PAIRS CODED
AGAINST THINKING TYPES

15set 1, 2016

from this study indicate the efficacy of coding for
thinking-skill development, it is not simply a matter of
giving the students an iPad and expecting this to happen.

Firstly, a careful balance needs to be struck between
teacher intervention using open, strategic questioning to
guide student thinking, and allowing sufficient time for
students to work out problems for themselves. To achieve
this, students need space and time to trial developing
strategies modelled to them by their teachers. Of course,
one of the challenges for teachers working in digital
environments is knowing if and when to intervene, and
in what way. Unless continuously observing students, it
is impossible to detect repeated errors or fully understand
flaws in strategies students may be applying, as no visible
“trail of evidence” is available. Teachers need to be
particularly vigilant in their work around the classroom,
to avoid students falling into cycles of repeated mistakes,
frustration, and learning stagnation.

Second, while Scratch Jnr. proved reasonably useful
for helping these students learn about shapes, it needed
to be supplemented by other, concrete materials. It
was difficult for the students to visualise the shape and
dimensions of objects their code created. Drawing these
on small whiteboards as they ran their procedure, or
using their whiteboards to plan directions and calculate
dimensions beforehand, were valuable strategies. Some
also used as references the shapes they had made with
paper in the introductory activities.

Third, teachers should take great care when selecting
student work pairs, and carefully monitor these
arrangements and be prepared to make changes, should
issues become apparent. While in this study there was
minimal evidence of deliberate “off task” behaviour, a few
pairs struggled to work collaboratively, often vying for
“hands on” time with the iPad, or attempting to prioritise

their ideas over those of others. While this may not be
unexpected, given the very young age of the students, it
can be highly beneficial to deliberately teach and model
collaborative strategies and use tasks to reinforce and
practise them.

Finally, and related to building collaborative skills,
this activity proved to be an ideal foil for introducing
the students to the process of providing peer feedback.
Strategies for doing this had been modelled by the teachers,
and the phrasing of suitable questions to ask, and how to
ask them, had been discussed in advance. While on this
occasion the process may not have yielded the quality
of feedback desired for all students, at the very least it
introduced them to the concept, and served as a valuable
starting point upon which to build.

In closing, carefully planned computational activities
like coding can provide teachers with motivating and
productive learning opportunities for students. However,
as pointed out by Mayer et al. (1986), much more needs
to be done to identify the types and sophistication of
thinking students use while coding, so teachers are in a
better position to design and implement tasks that will
optimise their development.

Acknowledgements
The authors gratefully acknowledge the funding support
of the Teaching and Learning Research Initiative (TLRI)
for undertaking this study.

Note
1	 Full details of the system, its operation and rationale

for use have been published extensively elsewhere (see
Falloon 2013a, 2013b, 2014, 2015; Falloon & Khoo,
2014). Use of the display capture app was approved by

TABLE 3. THINKING TYPES MAPPED AGAINST ELEMENTS OF COMPUTATIONAL ACTIVITY
(adapted from Brennan & Resnick, 2012)

Element Description Coding application examples Thinking types exercised

Technical &
Conceptual knowledge

Technical and conceptual
understanding of the basic
“building blocks” of code,
what they do, and how they
can be used.

Sequencing
Events and triggers
Parallelism (running processes in parallel)
Using conditionals, operators and variables

Remembering
Understanding
(conceptualising & planning)

Practices The techniques and
strategies used when
building code.

Incremental and iterative (‘step-by-step” code building,
testing, modifying)
Debugging code
Remixing or reusing code (own or others)
Modularisation (assembling code into modular “blocks’,
each contributing to a larger procedure)

Applying and creating
Analysing (predicting)
Analysing
Understanding
Evaluating

Perspectives Dispositions and attitudes
displayed while building
code

Sharing code with others
Collaborating to solve problems
Coding as a personal creative outlet
Understanding of technology as a problem solving tool

Analysing (predicting)
Analysing
Evaluating

T E A C H I N G A N D L E A R N I N G

16 set 1, 2016

the University of Waikato Education Research Ethics
committee in March 2014.

References
Australian Curriculum Assessment & Reporting Authority.

(2014). Creative and critical thinking. F-10 Curriculum,
General Capabilities. Retrieved from http://www.
australiancurriculum.edu.au/generalcapabilities/critical-and-
creative-thinking/introduction/introduction

Brennan, K., & Resnick, M. (2012, April). New frameworks
for studying and assessing the development of computational
thinking. Paper presented at the American Educational
Research Association Annual Meeting, Vancouver, BC.
Retrieved from http://web.media.mit.edu/~kbrennan/files/
Brennan_Resnick_AERA2012_CT.pdf

Careers NZ. (2016). Jobs in skill shortage. Retrieved from https://
www.careers.govt.nz/jobs-database/whats-happening-
in-the-job-market/skill-shortage-jobs/result/it-and-
telecommunications

Computer Science Teachers’ Association (CSTA). (2011). The
Computational thinking leadership toolkit. International
Society for Technology in Education (ISTE). Arlington: VA

Department for Education. (2013). National curriculum in
England: Computing programmes of study. Retrieved from
https://www.gov.uk/government/publications/national-
curriculum-in-england-computing-programmes-of-study/
national-curriculum-in-england-computing-programmes-
of-study

Doesburg, A. (2013, March 15). Does not compute—Where are
the IT workers? The New Zealand Herald. Retrieved from
http://www.nzherald.co.nz/business/news/article.cfm?c_
id=3&objectid=10871184

Education Scotland. (2015). Digital learning and teaching: Our
vision for digital learning. Retrieved from http://www.gov.
scot/Topics/Education/Schools/ICTinLearning

Falloon, G. (2013a). Young students using iPads: App design
and content influences on their learning pathways.
Computers & Education, 68, 505–521.

Falloon, G. (2013b). Creating content: Building literacy skills
in year 1 students using open format apps. Computers in New
Zealand Schools: Learning, Teaching, Technology, 25(1–3),
77–95.

Falloon, G. (2014). What’s going on behind the screens?
Researching young students’ learning pathways using iPads.
Journal of Computer-Assisted Learning, 30(4), 318–336.

Falloon, G. & Khoo, E. (2014). Exploring young students’ talk
in iPad-supported collaborative learning environments.
Computers & Education, 77, 13–28.

Falloon, G. (2015). What’s the difference? Learning
collaboratively using iPads in conventional classrooms.
Computers & Education, 84, 62–77.

Falloon, G. (2016). Building general thinking skills though
computational tasks: Evaluating young students’ experiences
using Scratch Jnr. Manuscript submitted for publication.

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An
overview. Theory into Practice, 41(4), 212–225.

Mayer, R.E., Dyck, J. & Vilberg, W. (1986). Learning to
programme and learning to think: What’s the connection?
Communications of the ACM, 29(7), 605–610.

Ministry of Education. (2007). The New Zealand curriculum.
Wellington: Learning Media.

Pea, R. (1983). Logo programming and problem solving.
ERIC Technical Report No. 12. Retrieved from http://eric.
ed.gov/?id=ED319371

Pea, R. & Kurland, D.M. (1984a). Logo programming and
the development of planning skills. ERIC Technical Report
No. 16. Retrieved from http://files.eric.ed.gov/fulltext/
ED249930.pdf

Pea, R. & Kurland, D.M. (1984b). On the cognitive effects of
learning computer programming. New Ideas Psychology, 2(2),
137–168.

Rosenbaum, M. (2015). How to fix the tech talent shortage.
Infoworld. Retrieved from http://www.infoworld.com/
article/2969298/agile-development/how-to-fix-the-tech-
talent-shortage.html

Wing, J. (2010). Computational thinking: What and why?
Carnegie Melon School of Computer Science Discussion Papers.
Retrieved from https://www.cs.cmu.edu/~CompThink/
resources/TheLinkWing.pdf

T E A C H I N G A N D L E A R N I N G

Dr Garry Falloon is an associate professor in Te Kura
Toi Tangata Faculty of Education, The University
of Waikato. Garry is presently involved in post-
graduate teaching, supervision, and research in
digital technologies and eLearning. He is principal
investigator for a 2-year Teaching and Learning
Research Initiative (TLRI) project exploring student
thinking development when using tablet devices
collaboratively within inquiry and problem-based
learning scenarios in the primary school

Email falloong@waikato.ac.nz

Paula Hale has 24 years' teaching experience. This
was Paula's first year working in a collaborative
environment and working for the first time working
on a TLRI project. She is the assistant principal at
Leamington Primary School in Cambridge. She has
worked with all levels in a variety of primary schools,
predominately in the junior school.

Tonia Fenemor is ICT team leader at Leamington
Primary School, Cambridge. Tonia has 16 years'
teaching experience, working mostly in the junior
school with some time spent across levels. This was
her first year working in a collaborative, innovative
learning environment. She has a particular interest in
teaching and learning with technology.

http://www.australiancurriculum.edu.au/generalcapabilities/critical-and-creative-thinking/introduction/introduction
http://www.australiancurriculum.edu.au/generalcapabilities/critical-and-creative-thinking/introduction/introduction
http://www.australiancurriculum.edu.au/generalcapabilities/critical-and-creative-thinking/introduction/introduction
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://www.nzherald.co.nz/business/news/article.cfm?c_id=3&objectid=10871184
http://www.nzherald.co.nz/business/news/article.cfm?c_id=3&objectid=10871184
http://www.gov.scot/Topics/Education/Schools/ICTinLearning
http://www.gov.scot/Topics/Education/Schools/ICTinLearning
http://eric.ed.gov/?id=ED319371
http://eric.ed.gov/?id=ED319371
http://files.eric.ed.gov/fulltext/ED249930.pdf
http://files.eric.ed.gov/fulltext/ED249930.pdf
http://www.infoworld.com/article/2969298/agile-development/how-to-fix-the-tech-talent-shortage.html
http://www.infoworld.com/article/2969298/agile-development/how-to-fix-the-tech-talent-shortage.html
http://www.infoworld.com/article/2969298/agile-development/how-to-fix-the-tech-talent-shortage.html

