
3set 1, 2016

Q & A

Computational thinking
is more about humans than computers

TIM BELL WITH JOSIE ROBERTS

Set interviews computer scientist Professor Tim Bell to figure out how
computational thinking differs from digital literacy, and why both might
be important for today’s society. Tim explains his mission to introduce
teachers and students to computational thinking, even without a computer
in sight. His work with schools—from junior primary to senior secondary—
shows that computational thinking augments a range of learning areas and
competencies.

Q. Are there important differences between digital
literacy and computational thinking?

That’s a big question!
When I was visiting New York City a few years

ago, a friend very kindly shouted me tickets to a jazz
concert; all I had to do was pick up the tickets from
the ticket booth. When I got to the concert about 20
minutes early, there was a queue going out the door.
By the time I got to the front of the queue I was a
few minutes late for the concert, and surrounded by
agitated customers! I hastily asked, “Do you have some
tickets for Bell?” The attendant asked me what time I
made the reservation, which I didn’t know—even if
I had booked them myself I probably wouldn’t have
remembered! She rolled her eyes and gave me a “yet
another one” look; she had the tickets in a box in the
order that people phoned in. With a sigh, she started
at the back of the pile, and went through every ticket
until she found mine. As I hurried into the concert, I
could hear her sighing because the person behind me
also couldn’t remember the exact time they booked
their tickets.

This is a somewhat stark example of not using
good computational thinking—perhaps putting the
tickets into alphabetical order would have saved a lot
of time? But how do you quickly put a few hundred
envelopes into alphabetical order? And how much time
would it save? Seconds? Minutes? Hours? These are the
questions a computational thinker would be asking.

Computational thinking has emerged as a useful
toolkit for dealing with problems where the solution
is a process, rather than a product. It can be applied
to all sorts of situations, not necessarily involving a
computer. When you make a computational process
happen on a computer, that’s called programming, but
if you don’t start with good computational thinking,
you can end up with a slow app that frustrates the
users because it’s doing things the wrong way. Many
people have come across systems that can take way
too long to respond because of some inefficiency in
how they were designed, or don’t give effective access
to the information that you know is there.

While computational thinking isn’t directly about
programming, when you write a program it provides

http://dx.doi.org/10.18296/set.0030

http://dx.doi.org/10.18296/set.0030

4 set 1, 2016

a thorough test of your computational thinking—the
computer is completely unforgiving and will follow your
set of instructions exactly, so students receive instant
feedback if their computational thinking is sound. For
some students this is frustrating, and for others it’s
liberating! And so we end up with the strange connection
where computational thinking (and the closely related
field of computer science) are not particularly about
programming, yet programming can be a key focus for
computational thinking.

Digital literacy, on the other hand, focuses on using
a digital system effectively. This is also important, since
digital devices have become such ubiquitous tools, but it
generally treats the software or app as the starting point,
whereas computational thinking explores how such apps
could be designed. Not understanding the difference
between students being a user (digital literacy) and creator
has delayed the introduction of computational thinking
into curricula, and officials find these hard to distinguish,
believing that introducing devices will automatically
support computational thinking. Having BYOD [bring
your own device] and high-speed internet is about digital
literacy, which can be applied across many subjects,
but computational thinking is quite different. Overseas
the introduction of BYOD has even hindered getting
students involved in activities such as programming;
just when schools have started to teach programming
(which requires large screens and the ability to run new
programs), administrators have removed computer labs
and replaced them with locked down tablets with small
screens!

Q. Why might teachers want to consider computational
thinking?

The big picture is that society is becoming increasingly
digital, and much of what happens for us as humans is
based around computation, whether it is communicating
with others, transport, shopping, financial transactions,
or entertainment. Issues like privacy and security develop
a new dimension in a digital context. Instead of just
being a user at the mercy of those developing the systems,
students can start to understand what is happening, and
even have a hand in making it happen.

We’ve been running pilot programmes in local
primary schools looking at what works and what
doesn’t for introducing computational thinking and
programming into New Zealand schools. The interest
in the programme has been snowballing, and the great
thing about working with primary school teachers is that
they already have much of the background needed to
engage with teaching computational thinking. Teachers
in the pilot have been embracing the new topics, not just

because they are seeing a high level of engagement with
students, but because of the surprisingly strong cross-
curricula benefits. Students have demanded to learn
concepts from geometry in order to move objects around
on the screen, they have found connections to health and
PE, and they have developed their overall literacy as they
communicate with others about what they want to do, or
have achieved.

We’ve also found that many teachers who approached
this topic very nervously (with no previous experience)
have found it exciting; they can understand the concepts
if given an appropriate introduction, and they find their
students very engaged as they explore how to create
digital systems rather than just use them.

Q. Why is it important for students to learn how to think like
a computer? Isn’t it enough for them to be able to use one?

Computational thinking isn’t about thinking like a
computer; it’s about getting control over digital devices
by understanding them. This requires a higher order of
thinking and reasoning than a computer can do, and a
different kind of reasoning to what we are used to in the
physical world. For example, computer programming isn’t
about just writing the correct “code”. It involves finding
out what you want to write, testing it, and debugging it
(tracking down the part of the program that isn’t doing
what you intended). All this is in a digital domain where
there are no physical objects to observe, but virtual
objects can be created at a whim, including scaffolding to
help you develop your own program, the opportunity to
use automation to reach to the other side of the world in
a fraction of a second and collect information, and easy
mechanisms to distribute millions of copies of a program
internationally with a few minutes’ work! This is quite
a different view of the world to physical systems that
students usually interact with, even though digital devices
have become a huge part of their physical world.

By gaining mastery over the basic ideas of digital
systems, students are empowered to understand the
digital world in which they live. It is possible for relatively
young students to grapple with ideas like encryption,
which affects our privacy—if a wireless laptop is
transmitting all the data it is sending to the internet, how
could it possibly be private? They can explore the limits of
computation—could a computer ever program itself? Are
there things that we might think are possible to do with a
computer, but actually aren’t? Are there things we could
do with computation, but shouldn’t?

In the same way that students need to understand
some science to form a view on climate change, or they
need to understand social and cultural issues to form a
view on politics and conflicts, they need to know some

Q & A

5set 1, 2016

basics of the concepts underlying digital technologies to
make reasonable decisions about the digital systems that
interact with almost every move we make.

The opposite of this is “screen essentialism”—the idea
that what’s on the screen is the whole thing, and we take
anything behind the screen for granted. Computational
thinking gets students to look behind the screen at what
is really happening, and empowers them to know that
they can influence it, and even create things behind the
screen for themselves.

Q. Can you tell us about the Computer Science Unplugged
(CSU) resource for teachers and what led you to develop it?
What do you mean by the trailer tag-line “computer science is
no more about computers than astronomy is about telescopes”?

CS Unplugged (csunplugged.org) started over 20 years
ago when my son’s J1 class invited parents to talk about
their jobs. I was at a loss for how to present computer
science to 5 and 6 year olds, particularly when the
previous talks had been from a policeman with a police
car, and a nurse with fake blood and bandages. So I made
the radical decision to not use a computer, and developed
some games and a magic trick to get across the concepts
that I worked with, rather than the end result (which
would be a fast, easy to use, secure, reliable computer
program).

It turned out to be engaging for the students, and
reinforced other curriculum areas, and I was subsequently
invited back to try it with other classes. Soon after that
I came across Mike Fellows, in Canada, who was doing
something similar, and we pooled our ideas, releasing
them as “CS Unplugged” (it was the early 1990s, and Eric
Clapton’s Unplugged album had just been released).

Since then, CS Unplugged has been used all around
the world, translated into about 20 languages, and
has had a renaissance in countries where computer
science or computational thinking are part of the junior
curriculum. Teachers have found it empowering: they
already know how to work with cards, string and chalk,
and how to teach young children, so it provides the
glue for them to do something without having to worry
about digital devices crashing or being incompatible
with the school system. Of course, we don’t advocate
it as a complete computational curriculum, but it’s a
very useful component that gets students away from
their screens and thinking about key concepts. The idea
of “computational thinking” became popular about a
decade ago (through an influential article in 2006 by
Jeanette Wing), and as that became popular, we realised
that the Unplugged approach had captured much of
the essence of computational thinking. The relationship
between computer science and computational thinking

is very intricate, and could be the subject of a whole
article, but to simplify things, at a primary school level
these concepts largely converge, so we had developed an
approach to computational thinking before it became a
buzzword.

The phrase “computer science is no more about
computers than astronomy is about telescopes” was
coined by Mike Fellows (although if you Google it, you’ll
have to do a thorough job to establish who said it first,
as it was later used by Dijkstra, but that’s another story.)
Mike also drew analogies with chemistry being about test
tubes, and biology about microscopes. These disciplines
aren’t defined by their key tools, but by the great ideas
behind them. Many of the key ideas in computer science
existed before computers did; for example, the main
logic that is the basis of all digital computers is Boolean
algebra, developed by George Boole, who was born
201 years ago. The word algorithms is derived from the
name of a 9th-century author, Muḥammad ibn Mūsā al-
Khwārizmī.

To follow the analogy, astronomers seem to use
telescopes a lot, and spend a lot of money on them, but
usually it’s not because they’re interested in telescopes.
In computer science, we also use computers a lot, but
we’re more interested in what we can make them do, and
also what we can’t do with them. In fact, if computer
science is about anything, it’s about humans: how do
we develop software and apps that don’t keep people
waiting? That don’t flatten your smartphone battery
by doing unnecessary calculations? That can operate
and store data in the limited space of a wristband? That
will be reliable even if the hardware isn’t? That have an
interface that matches the way that people think? Just
as “telescope scientists” are more focused on the stars,
computer scientists are more interested in what a digital
device can do for humans (and in fact, some of those who
are more interested in the device than humans have been
responsible for some pretty annoying systems that are far
from “user friendly”!)

Q. Is computational thinking just another educational fad?
How does computational thinking and the CS Unplugged
resource interplay with the New Zealand Curriculum and
its learning areas?

While there are good arguments for teaching
computational thinking in its own right, I think its
longevity rests on whether systems based on computation
(i.e., digital technologies) are a fad, or are likely to
continue to permeate society, and whether or not schools
should prepare students to be informed citizens in a
democratic society. If digital systems are a passing fad,
it’s not clear what they’d be replaced with (sure, quantum

Q & A

6 set 1, 2016

computing might be a thing, but that’s still based on
computational thinking), or one could imagine a future
where digital systems have collapsed and we revert to
19th-century technology (there are already people who
would advocate this!) In the meantime, we live in a
society that is increasingly controlled by digital systems,
whether it is the hundreds of computers in your car,
the digital mobile phone system, your bank account, or
your online purchases. Your access to services and right
to privacy are heavily dependent on the digital world. I
also hope that we will continue to be a society in which
the education system prepares students to be informed
citizens!

As a topic in schools, there’s the concern that it
might push out other important learning areas, but our
experience is that relatively little extra time is needed
because it exercises other areas of the curriculum. There
are obvious connections to numeracy and literacy, but we
are also finding meaningful ways to have computational
thinking reinforce areas as diverse as music, and health
and PE (bear in mind that music and fitness are now very
digital—how often do you see someone carrying a music
player or wearing a fitness tracker, or both at the same
time!?) So the relationship of computational thinking
to the curriculum is a bit like that of maths or English;
you could argue that these needn’t be taught in their
own right because they would be used by other subjects
anyway, but at some point you need to acknowledge that
there are some valuable concepts that students might not
encounter by chance, and ensure that they are covered.
In reality, integrating topics is a great way to teach them,
and real problems will draw on many disciplines, as well
as exercising the key competencies.

Q. What exciting developments have you witnessed in New
Zealand primary and secondary schools, and where do you
see things heading next?

New Zealand was a very early adopter of computer
science as a formal high school topic (as far as I know,
it was the first English-speaking country to do so), in
the form of NCEA achievement standards starting in
2011. This generated a lot of interest around the world,
and since then we have seen the United Kingdom and
Australia adopt forms of this, not only at high school
level, but in the last couple of years as compulsory
primary school topics. The process in New Zealand has
been a grassroots movement, as teachers have embraced
the new opportunities (many of them had been holding
out for something like this); however, not all schools
have adopted the standards, and often management,
parents and students haven’t fully understood what it
is about, leading to mismatches in resourcing for PD

or students taking on computer science without an
adequate background. Despite this, New Zealand now
has hundreds of teachers who have upskilled in this area
(mainly thanks to sponsorship from industry, who are
motivated by the severe lack of graduates in this area,
including concerns about diversity).

At the university level we have seen increases in
the quantity and quality of students arriving, but most
importantly, an increase in diversity. Traditionally very
few women have taken computer science, and yet they
often do better than men both in employment, and
in academic results (girls have done better than boys
in several key computer science NCEA standards). If
computer science is ultimately about people, then we
need developers who represent the diverse range of people
that will be using the software/apps being produced, and
it’s heartening to see things moving in that direction,
although there’s a long way to go yet.

We know that to really influence diversity, it’s
important to give students opportunities to find out
what the subject is before they reach their adolescent
years, where decisions might be influenced more by
social pressure and less by what they are actually good at.
Introducing computational thinking or computer science
into primary schools is taking off around the world. Here
in Christchurch we’re in our third year of running formal
pilots in local primary schools, working with typical
teachers and typical students (a lot of previous work has
been done with self-selected clubs or special events).

We are finding that the teachers in the pilot are
embracing the new material. Many have reported that
through computational thinking activities they are also
teaching other curriculum areas, and hence the impact
on teaching time is relatively low. We have observed that
because teachers have been teaching computer science
and programming, they now are integrating this into
their inquiry units because programming gives students
an open opportunity to demonstrate their high order
thinking in any subject by creating new artefacts such
as quizzes or animations to demonstrate their learning
as examples. Some teachers have observed that students
who were previously disengaged with their learning
are drawn to the computational thinking exercises
because they are using materials and movement to solve
problems. This isn’t about using e-learning tools, but
doing computational thinking, and through it exercising
numeracy and literacy, and other topics, including
physical education (e.g., by writing and testing software
for a beep test).

Overall, the value of computational thinking for
students isn’t just about particular skills and knowledge
that they might pick up, but finding out if this is
something they are good at, and appreciating what

Q & A

7set 1, 2016

The next article in this issue of set explores how to teach
coding, a specific activity associated with computational
thinking (see Falloon et al., p. 8). The team show that coding
is achievable for very young students and helps them to build
a range of general and higher order thinking skills.

the supporting skills are. For example, it’s very hard to
explain how maths is crucial to computing (often students
or parents see maths as just arithmetic, which of course
the computer can do for you), but when you’ve done
programming you can appreciate that you need to learn
how to work accurately with symbols and apply reasoning
to formal systems, and use geometric ideas to create great
graphics.

So while it’s great to be able to use digital devices,
understanding them and creating new digital systems is
empowering for students (and great for our economy).
Since I started with an example of a lack of computational
thinking working against me enjoying a performance, can
I give a link to some recent Oscar presentations where
the presenters acknowledged how these skills benefit
the creative world? One of our ex-students, with several
others working at Weta Digital in Wellington, recently
won an Oscar. It wasn’t for acting, but for developing
the software that provided the innovative graphics
for the film Avatar (see https://www.youtube.com/
watch?v=C54bEFUXBnc). It’s one thing to know how
to use software, but it’s getting beyond just what’s on the
screen that gets international attention.

Reference
Wing, J. M. (2006). Computational thinking.

Communications of the ACM, 49(3), 33–35.
http://dx.doi.org/10.1145/1118178.1118215

Q & A

Tim Bell is a professor in computer
science at the University of Canterbury.
His Computer Science Unplugged project
(csunplugged.org) for students of all
ages is widely used internationally,
and its books and videos have been
translated into about 20 languages.
Its sister project, the CS Field Guide
(csfieldguide.org.nz) presents computer
science for high school students. Tim’s
work is widely published and he has
received national and international
awards in computer science education.
He is also a qualified musician, and
performs regularly on instruments that
have black-and-white keyboards.

https://www.youtube.com/watch?v=C54bEFUXBnc
https://www.youtube.com/watch?v=C54bEFUXBnc
http://dx.doi.org/10.1145/1118178.1118215

