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Learning trajectories/progressions are an emerging research focus in mathematics 

education. A set of descriptors of early progress in mathematics was developed for students 

with complex needs. Developers leveraged off existing research-based frameworks and 

meta-analyses, as well as integrating findings from individual research studies in some sub-

constructs. Issues emerged during the process that are informative to others working on the 

development of learning trajectories/progressions. 

Introduction 

Research into learning trajectories in mathematics has momentum internationally 

though trajectories, or progressions, vary in grain size, scale, and the methodology used to 

create them (Siemon, Horne, Clements, Confrey, Maloney, Sarama, Tzur & Watson, 

2017). In New Zealand learning progressions frameworks (LPFs) were developed recently. 

These frameworks provide high-level (or big-picture) illustrations of the typical pathways 

students take as they make progress in reading, writing, and mathematics (Ministry of 

Education, 2019).  

This paper shares the results of a partnership between the New Zealand Council for 

Educational Research (NZCER) and the New Zealand Ministry of Education to develop an 

inclusive developmental mathematics framework for students who are learning within 

Level 1 of the New Zealand Curriculum (NZC) (Ministry of Education, 2007). The 

rationale for this development is that detailed descriptions of progress will support 

educators, particularly those working with learners with high and complex needs (learning, 

hearing, vision, mobility, language use, and social communication) of various ages, to 

provide needs-based opportunities to learn, monitor achievement, and inform students and 

parents.    

This paper outlines how existing research is influencing the development of the 

progressions, and discusses the challenges faced by the team to develop descriptors that are 

inclusive of a diverse range of learners. The research question is: “How can existing 

literature be used to create learning progressions for students at the early stages of their 

mathematical development?” 

Background 

Establishing growth paths for student learning is an on-going research focus in 

mathematics education (Weber & Lockwood, 2014; Wright, 2014). Weber, Walkington, 

and McGalliard (2015) distinguish learning progressions from learning trajectories. They 

describe progressions as pre-determined, sequential checkpoints that are underpinned by a 

validation view of student learning. Learning trajectories, usually described as 

hypothetical, arise from an emergent view of student learning as it occurs in classrooms, 

interviews, and naturalistic settings. Curriculum statements are usually progressions while 
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trajectories are the product of empirical research. The authors also trace types of learning 

trajectories back to epistemological positions of their authors; radical constructivist, 

cognitive science, or situated cognition.  

Siemon et al. (2017) position trajectories and progressions as synonymous. They 

document a panel discussion of prominent researchers in the field of learning trajectories. 

While the authors clearly outline their different epistemological perspectives, there is 

considerable consensus about the approaches they adopt. Development of learning 

trajectories begins with a conjectured pathway that is developed from experience and a 

detailed search and synthesis of the pertinent literature. This static trajectory is tested and 

iteratively revised with the aim of improving its usefulness for developing students’ 

knowledge and understanding of the mathematical topic or field, within instructional 

settings. Usually trajectories include a framework for conceptual development, methods of 

evaluating students’ thinking at points in time, instructional materials, and evidence for 

validation of the final trajectory. The research reported here adopts Siemon et al. (2017) 

perspective.  

Research into learning trajectories looks for commonality among the relevant 

population of learners. The unique nature of the work reported here is that the intended 

learners are those with high and complex learning needs. Rankin and Regan (2004) 

identify the essence of complex needs as including both breadth (multiple needs that are 

interrelated or interconnected) and depth of need (profound, severe, serious, or intense 

needs). In New Zealand school settings, there is further definition by level of need for 

funding purposes—either very high or high needs. The areas of need are learning, hearing, 

vision, mobility, language use, and social communication.   

The project team drew on the existing research literature, particularly that related to 

early childhood, to create a set of progressions relevant to students with high and complex 

needs. The most informative and readily applicable literature sources are established 

frameworks, learning trajectories, and meta-analyses of the known research. Few 

established research-informed frameworks exist for students with complex needs. A 

notable exception is the ABLES framework developed at the University of Melbourne 

(Strickland, Woods, & Pavlovic, 2016). Some detailed trajectories exist for a few 

mathematical topics. Clements, Wilson, and Sarama (2004) provided a detailed trajectory 

for young children’s composition and decomposition of geometric shapes, as did Confrey, 

Maloney, Nguyen, Mojica, and Myers (2009) for equi-partitioning. Tzur (2019) developed 

a reorganisation conjecture into a trajectory for fractional number. Some meta-analyses of 

research on mathematical topics provide learning trajectories. For example, Baroody and 

Purpura (2017) include a table of significant developments in young children’s 

development of number concepts. They list expected ages from birth to 7 years for key 

accomplishments, citing significant research in support of their claims.   

With other topics, detailed research summaries of learners’ development are general, 

partial, or non-existent. Classification of shapes is a good example. The prevailing theory 

of development—van Hiele’s levels (van Hiele, 1986)—is too broad to provide a finer 

grained description of progression. A main criticism of the van Hiele levels is that students 

exhibit different levels for different tasks in the same mathematical domain. It is difficult 

to link trajectories with progressions for topics where the research is not well summarised. 

A requirement of this project was that the descriptors connect with the early steps of 

the Learning Progressions Framework (LPF) (Ministry of Education, 2019). The 

developers created a set of hypothetical progressions based on research literature and their 

experience. The progressions were then validated by modelling data from teacher 
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judgments about the sophistication of students’ individual responses to tasks, as opposed to 

the modelling of student schemes most typical in trajectory research.  

Method 

Strategic planning for the research project began in 2017 with the establishment of 

principles, purposes, and audience for the set of progressions to be developed. The agreed 

principles were that the progressions contained clear descriptions of performance that were 

inclusive of all students working within Level 1, promoted and illustrated effective 

pedagogical practices, built on student strengths rather than deficits, and allowed for 

variability in progression. Important purposes were to provide data for educators to plan 

next learning goals and provide feedback to learners, to support monitoring of student 

progress, to help parents to support their student’s learning at home, and to provide a focus 

for reflective discussions among educators. A range of stakeholders was considered, 

including teachers and leaders in schools, specialist support teachers, learners, and whānau 

(family members).  

The exploratory study consisted of three phases over a period of 2 years.  

• Phase One: Literature review investigated trends and developments nationally and 

internationally in assessment, descriptions of progress, and mechanisms for 

reporting.  

• Phase Two: Exploratory study in mathematics focused on adapting existing 

approaches to reporting progress to include all learners, including those working 

long term within Level 1 of NZC due to high and complex needs.   

• Phase Three: Development and exemplification of an inclusive mathematics 

progression framework occurred with the support of researchers and practitioners 

from the sector.  

This paper reports on Phase Three. Work began with a comparison of existing 

frameworks for numeracy, either for students with complex needs or students in the years 

birth to 7 years. Progression frameworks from Australia, the United States, the United 

Kingdom, Ireland, and New Zealand were compared. Common sub-constructs were 

identified, from which a set of 18 indicators was created. The project team reviewed the set 

of indicators on three criteria; breadth of mathematical ideas, specificity, and functionality. 

Specificity meant a clear and discrete definition of the sub-construct—for example, 

counting as discrete from number sequence. Functionality meant the usability of the 

indicator for educators.   

Indicators included Forward and Backward Word Sequences, Subitising, Counting, 

Finding Difference, Equal Sharing, Repeating Patterns, Classifying and Structuring 

Shapes, Sequencing Events, and Organising Data. A smaller set of eight indicators was 

selected for development, consultation, and trialling. It was anticipated that some 

indicators such as Counting would be supported by a broad literature, while others, such as 

Sequencing Events, would be more difficult in terms of locating relevant research.  

Each indicator comprised descriptors of student schemes (i.e., action structures), and 

examples of situations in which students might demonstrate those schemes. Descriptors 

within each indicator were arranged vertically from less sophisticated behaviours at the 

bottom to more sophisticated at the top. Each individual descriptor described a scheme that 

was observably distinct from the one above and below it. The most sophisticated 

descriptors represented behaviours that are approximately aligned to the boundary between 

Level 1 and Level 2 of the NZC. Figure 1 shows the algorithm used by researchers to 

create descriptors. 
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Examples were developed to illustrate behaviour (schemes) that exemplify the 

descriptor. Situations were carefully selected to show a diverse range of contexts and 

learners (e.g., ages, ethnicities, modes of communication, school/home settings, learning 

areas), in consultation with a small working group of educators with considerable 

experience of working with students of complex needs. 

 

Figure 1. Flowchart of the descriptor creation algorithm. 

Findings 

Two indicators, Counting and Sequencing Events, are used below to illustrate key 

findings from the process of developing the set of descriptors. Below in the examples, the 

reader’s attention is drawn to issues that emerged in the development process rather than to 

the artefact of the complete set of descriptors. The Counting indicator is chosen because it 

illustrates a sub-construct of mathematics for which a set of conceptual principles, and 

sequence of schemes, are extensively researched (Gelman & Gallistel, 1978; Steffe & 

Cobb, 1988; Wright, 1991). A meta-analysis (Baroody, Lai, & Mix, 2006) clearly 

described development from birth to 7 years or more. Other comprehensive meta-analyses 

were also available. Table 1 shows three of the six descriptors in the Counting indicator. 

The examples are a sample of those produced. 

Creation of the Counting descriptors exposed two main issues— relationships among 

descriptors, and the use of specialised terminology. Creation of discrete indicators suggests 

that the learning progressions are independent of those in other indicators. Perceptions of 

independence can be an unintended consequence of creating discrete descriptors.  Counting 

with understanding involves the integration of multiple schemes and concepts. For 

example, developing cardinality (count as quantity) involves using subitised images of 

intuitive sets (1–4) to create grouping knowledge for larger collections; matching of 

spoken nouns to these larger collections, across variable contexts; and connecting forward 

and backward word sequences with increasing and decreasing quantities. Separate 

indicators were created for Subitising, Forward and Backward Number Sequences. 

Tension occurred with adapting research terminology for an educator audience. 

Researchers spend effort assigning terms to phenomena to capture nuances that are 

important to meaning making. For example, the term “intuitive numbers” describes 
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numbers instantly recognised. The initial counting descriptors used the terminology 

“recognising intuitive numbers 1–4” to describe the observable actions of quantifying 

small sets of objects by appearance, rather than by counting. Feedback from the focus 

group indicated that teachers would not understand or engage with the term “intuitive”. 

“Intuitive” was replaced with “instantly recognised numbers” or was removed entirely, as 

illustrated in descriptors two and three (refer to Table 1). Key feedback from the focus 

group was that teachers and parents needed to recognise the observable actions of their 

learners within the language of the descriptors. Finding ‘middle ground’ between 

commonly used language and the introduction of new vocabulary that has specific meaning 

in the research was a significant challenge. “Intuitive” conveys the fact that recognising 

quantities of one to four occurs innately, so some meaning is lost. Terminology from 

research was often adapted to make the descriptors accessible to the audience. 

 

Table 1  

Counting Indicator 

Counting— Finding the number of items in a collection or set 

Descriptor progression  Examples (sample) 

Counts and forms sets of up to ten 

objects by pointing to, or 

looking at, the objects one by one, 

and saying the whole number 

counting sequence correctly.  

• Student nods and sub-vocalises, “One, two, three, four, 

five, six, seven, eight, nine, ten,” as they count each 

biscuit when asked, “How many biscuits are in the 

packet?”  

• Student closes their eyes and listens to the beats on a 

drum.  Student sub-vocalises as they count each beat 

and names the correct number of beats.  

Correctly counts and forms sets of 

objects with instantly recognised 

numbers (1–4), 

and compares greater sets 

by global appearance.  

• Student accurately counts pencils verbally, “One, two, 

three, four,” when asked to get four pencils. They point 

to one pencil for one number word.  

• When asked, “Which bowl of apples has more?” (five 

and eight), the student indicates the bowl with eight 

because “The bowl is more full.”  

Attempts to count a set of objects 

1–4 using number words, but 

without accurate one-to-one 

correspondence.  

• Student attempts to count five cars given to them by the 

teacher.  Student counts two cars as one and says “One, 

two, three, four.” 

• Student counts out five when asked to collect four 

blocks.  Student uses the number words to count but 

says two words for the same block.  
 

The Sequencing Events indicator illustrates a descriptor for which the literature within 

mathematics education is sparse (Thomas, Clarke, McDonough, & Clarkson, 2017). Yet 

schemes for sequencing time are particularly important for student in their everyday life. 

The project team found no useful meta-analysis to create the Sequencing Events indicator, 

and existing frameworks tended to develop measurement through more tangible attributes, 

such as length or capacity. Time-focused research was sourced from the psychology and 

science education literature (e.g., Droit-Volet & Coull, 2016; McCormack & Hoerl, 2017). 

Although the articles described micro-developments, it was possible to combine the results 

of individual studies into a coherent progression, using data about average age bands for 
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development. Four of the seven steps in the indicator are given in Table 2, for purposes of 

illustration.   

 

Table 2  

Sequencing Events Indicator  

Sequencing Events—Ordering events chronologically including past and future 

Descriptor progression  Examples (sample) 

Plans future sequences of events 

with causal awareness of both 

order and duration, based on past 

experiences.  

• Student plans and executes getting ready to go home. 

They allow for different durations to complete 

activities, e.g., tidying the desk or tote tray takes longer 

than getting the homework bag.   

Plans future sequences of events 

realising the causal significance of 

order.  

• Student correctly orders pictures of actions to make 

pancakes, aware of the causal significance, e.g., “If you 

don’t butter the pan, the pancakes stick.”   

• Student correctly orders pictures of actions to make 

toast, aware of the causal significance, e.g., knows that 

the toaster button needs to be pushed down to cook the 

toast.   

Realises that time is linear, 

directional and independent of 

events.  

• Student acts on instructions that involve present and 

future actions, such as “Can you please brush your 

teeth and get your coat. We will tidy your room later.”  

• Student accepts that two events can happen at the same 

time, e.g., “I went down the slide. Mere climbed the 

ladder.”  

Discriminates between past and 

present events.  

• Student orders events that happened yesterday, e.g., 

“I got up, then went to rugby, then Dad picked me up.”  

• Student relates today and tomorrow, e.g., “Today is 

Friday. It is Saturday tomorrow.” Student can indicate 

this on a calendar.   
 

The most significant issues that arose in the development of the Sequencing Events 

indicator were the importance of integration of related research studies, the power of 

clearly described progressions, and linkage to Levels 1 and 2 of the NZC. Meta-analyses 

play a key role in the development of research-based trajectories, a finding that became 

obvious to the project team when no such resource existed. Through their own reading of 

the literature team members developed their personal understanding of learners’ 

development of sequencing events. For example, existing in the present generally precedes 

recalling of past events and predicting the future. Students’ anticipation of order and 

duration are important to their planning for the future. This explicit knowledge guides 

educators in interacting with students. The process of creating examples helped team 

members better understand a stage, through describing students’ actions and ways of 

communicating. For example, understanding that time is linear and one-directional can be 

shown through students distinguishing the past as unalterable, from the future which can be 

altered. Students with physical disabilities might use computer technologies to 

communicate with their carers about their preferences for what happens to them next.  

The third issue of linkage occurred because schemes for Sequencing Events did not 

integrate easily with the achievement objectives given in the NZC. Level 1 in measurement 
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begins with students’ attendance to attributes through direct comparison, before transitive 

reasoning and the use of informal and formal units are taught. Time is less tangible than 

physical attributes, such as length. Non-synchronous events cannot be directly compared. 

Other attributes, such as speed, and emotions about a situation, distort students’ perception 

of duration. Measure with units is needed to compare separate events. That is a higher 

degree of sophistication than normally expected with physical attributes at the beginning of 

schooling. Time is a complex sub-construct that involves connection of ideas about 

sequence, duration and measurement, including knowledge of devices. The current 

descriptor integrates sequence and duration but how measurement of time develops during 

early schooling and for students with complex needs remains unclear and poorly 

researched. 

Discussion 

The development of descriptors is a work in progress and field trials are needed to 

explore how useful the descriptions are for educators, students and families. It is difficult 

to create a set of descriptions that meet the needs of all educators and families irrespective 

of their situations.  

Creation of the descriptors in this project was made significantly easier by reference to 

existing literature, particularly research-based developmental frameworks and meta-

analyses. In many significant sub-constructs of early mathematical learning, such literature 

does not exist. This is particularly true in the areas of spatial and geometric thinking, 

measurement of time, and statistical investigation. This project showed that both learning 

trajectories and progressions can be supported by research but more work in the above 

areas is needed.  

There were compromises made through the development of descriptors. Fragmentation 

of mathematics into discrete sub-constructs improves specificity but is balanced with loss 

of connection among the sub-constructs. In a similar way, organising progressions by steps 

creates clearly described growth paths, but is balanced by acknowledgement that learners 

vary considerably in their behaviour in the short term. Expert terminology was displaced 

by naturalistic language at times. Compromise occurred between conveying meaning and 

the usability of the descriptors for educators and parents. Inclusion of examples involved 

compromise between providing situations that clearly illustrate the meaning of wording of 

a step, and the need for representation of all students with complex needs. Examples can 

only be representative of the diverse situations and learners that educators encounter.  

Other important issues emerged in the development process. The trajectories for early 

childhood and older learners with complex needs may not be the same. The project team 

made no assumption in that respect. Mostly, the progressions were developed from the 

early childhood literature. Similarity and difference in the way young children and learners 

with complex needs develop their schemes requires investigation. Development of the 

descriptors was a powerful learning experience for members of the project team. Educators 

would benefit from similar opportunities to hypothesise trajectories and compare their 

ideas with trustworthy research, as this is likely to be a more powerful experience than 

being given a completed artefact. However, compromises are always made between ideals 

for professional learning, and the constraints of resourcing. Learning trajectories are an 

important component of pedagogical-content knowledge and are noticeably absent for 

students with complex needs internationally. It is hoped that the set of research-informed 

descriptors can support educators and parents to provide students with targeted 

opportunities to learn. 
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